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Abstract After a brief introduction to the theoreti-
cal area concerning the propagation of non-stationary
states, two examples of our activities in the field of time-
dependent processes are presented and discussed. The
first concerns the possibility of controlling photochem-
ical and photophysical processes by properly shaped,
short, weak laser pulses. A theoretical approach
developed by our group is briefly reviewed and a new
example is presented on the control of the energy depo-
sition in a model linear aggregate of ten chromophores.
The second example deals with hydrogen transfer in
DNA base pairs and presents the result of a time-depen-
dent calculation on adenine–thymine and guanine–cyto-
sine pairs. These calculations show a coherent, periodic
behaviour and make it evident that imino-enol tautom-
erism cannot be interpreted as a source of mutations,
since it would generate too many mutation points along
the DNA.

Keywords Time-dependent processes ·
Non-stationary states · Laser control · Imino-enol
tautomerism · A–T and G–C base pairs

1 Introduction

The time-dependent Schrödinger equation (TDSE) has
been considered for a long time a secondary subject in
standard textbooks on Quantum Chemistry. In practice,
it was introduced just to derive the expression for the
transition probability of a molecule, subject to a weak
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oscillating electric field, by the first order perturbation
theory. The focus was mainly on the development of
suitable methods for the calculation of eigenstates and
eigenvalues of the molecular Hamiltonian, since the
time-dependent behavior was considered just a mat-
ter of multiplying each term of the expansion in term
of eigenstates by the right time-dependent phase fac-
tor exp(−iEjt). The alternative way of looking directly
at the dynamical problem has been scarcely pursued
in the conviction that basically no molecular process
could be detected in the time domain for lack of suitable
instruments.

This double way of looking at the time-behavior of
quantum states is well illustrated by the elementary, but
instructive, example of the motion of a coherent state of
the harmonic oscillator.

The wave-function for the ground state displaced
at x0 is

ψ(x0) = Ne− mω
2 (x−x0)

2
(1)

and its time evolution can be written down as:

ψ(x0, t) =
∑

n

|χn〉 〈χn | ψ(x0)〉 ei(nω+1/2)t/h̄

= e− mω
4 x2

0
∑

n

1√
n!

(mω

2
x2

0

)n
ei(nω+1/2)t/h̄ |χn〉 ,

(2)

where the last passage requires a few algebraic
manipulations.

The alternative way is to solve directly the TDSE:

i
∂ψ

∂t
= Hψ. (3)
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Starting with the trial function:

ψ(x, t) = exp
(
−mω

2
(x − X(t))2 + iP(t)

)
(4)

and substituting in Eq. (3), one finds that X(t) and P(t)
define the classical phase–space trajectory (starting at
x0 with null momentum). One may of course demon-
strate that the two results are completely equivalent. In
the first, the right time evolution is obtained through
the interference of eigenstates, while in the second, one
gets a more transparent result, showing clearly the simil-
itude with the classical dynamics. Moreover, the second
approach can be considered as the starting point of the
very fruitful approximate method developed by Heller
[1–3].

Things changed radically with the parallel develop-
ment of pulsed lasers and of detection devices with a
time resolution of a few femtoseconds, which opened
the way to modern femto-chemistry. The development
of methods for the numerical solution of TDSE became
a necessary step for interpreting a lot of time-resolved
experimental data as well as for looking at elemen-
tary chemical processes under a new perspective. In
the last few years, various eigenstate-free approaches
have been developed for investigating the behavior of
non-stationary states as semiclassical propagators [4–6],
Lanczos propagation of TDSE [7–10] and multi-con-
figuration time-dependent Hartree methods (MCTDH)
[11–13]. While on the one hand it is in fact clear that the
information content of a purely dynamical calculation
(i.e. eigenstate-free) involving longtime propagation is
identical to the one involving the eigenstates expansion,
on the other hand, in many cases, it is the short-time
behavior that is important for practical purposes and
an approach pointing directly to TDSE is much more
economical. This is well illustrated by the problem of
the computation of the absorption bandshape for a mol-
ecule (linear response). The spectrum can be conve-
niently evaluated as the Fourier transform of the dipole
autocorrelation function:

A(ω) ∝
∫

exp(−iωt) 〈g| d(t) d |g〉 dt

=
∫

exp(−i(ω − Eg)t) 〈g| d U(t) d |g〉 dt. (5)

The latter is obtained by propagating the doorway
state d |g〉. If one deals with a high-resolution spectrum
of a nearly isolated molecule, a longtime propagation
is needed to reproduce fine frequency details, and the
effort of the time-dependent approach becomes com-
parable to that of computing the eigenvalues of the
Hamiltonian. If one is interested in a condensed phase
spectrum, then the time-dependent approach becomes

much more convenient, since the various broadening
mechanisms damp the integrand of Eq. (5) in such a
way that only a short-time numerical propagation of the
doorway state is needed.

Since a non-stationary state is a coherent superposi-
tion of energy eigenstates, it can be prepared only by a
coherent broad-band light source, i.e. by a laser pulse.
As an example, let us consider a Gaussian laser pulse
containing a single carrier frequency ω (E is the electric
field):

E(t) = E0 cos(ω t + φ) exp(−(t − tc)2/�2
t ). (6)

Its Fourier transform is

E(ω) ∝ E0 exp(−(� − ω)2/�2
ω); �2

ω = 2/�2
t . (7)

Thus, if �t = 20 fs, then, according to Fourier analysis,
�ω = 2, 124 cm−1, which means that the excitation band
covers a few thousand cm−1 (i.e., usually, a single excited
electronic state but many vibro-rotational states). As
previously discussed, one may look at the motion of the
excited nuclear wave-packet as a quantum trajectory on
the potential energy surface or as the result of a complex
interferential pattern between eigenstates.

The above consideration introduces the last point we
want to make in this introduction. In the whole realm
of time-dependent phenomena, one has to deal with the
corner-stone of Quantum Mechanics, i.e. the superpo-
sition principle with its paradoxical aspects. The evolv-
ing state may in fact be a linear combination of states
of very different nature, thus recalling Schrödinger cat
states, as for example in symmetric mixed-valence com-
pounds in which one excess electron is simultaneously
on each moiety [14], or during light absorption, when
the molecule is simultaneously in the ground state and
in the excited state. These peculiar quantum features,
which have attracted a renewed interest in the last few
years for the exciting theoretical possibility of build-
ing up quantum computers [15–18], are however very
fragile with respect to the decoherence due to the sys-
tem–surrounding interaction. In practice, it happens that
after a few femtoseconds from its creation in a lin-
ear superposition state, each molecule will be forced
to choose among one of its component states and thus
behave as a classical object in this respect [19]. If we
deal with N molecules, this decoherence is further accel-
erated by the fact that they are normally prepared in
slightly different non-stationary states, and thus after
a certain time the different phase evolution will deter-
mine per se an incoherent response. The maintenance
of coherence is, in fact, a huge problem to be solved
in order to take practical advantage of the quantum
computing idea.
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After this short introduction, we move to concrete
examples, presenting a few selected results obtained
recently by our group, which has been working for sev-
eral years [20,21] in the area of theoretical study of
time-dependent phenomena in molecules and aggre-
gates. These concern the problem of achieving some con-
trol of molecular processes occurring in excited states
through suitably shaped laser pulses (Sect. 2) and the
modeling of proton transfer in DNA (Sect. 3).

2 The weak-field control

The idea of controlling molecular processes by laser
pulses dates a long time back [22,23]. It is however only
in recent years that efficient experimental setups have
been realized based on the development of the ultrafast
pulse shaping techniques [24]. Basically, the laser pulse
is first separated into its monochromatic components,
which are then forced to travel through different liquid
crystal pixels and them recombined to give the shaped
field. A computer-assisted modification of the local elec-
tric field acting on each pixel changes the optical path
in such a way that the right phase and amplitude of
each component is achieved. As a further step, the pulse
shaper may be coupled to the instrument measuring the
observable, one is interested in, to build up a system
capable of achieving the required optimal result through
a computer-guided self-learning algorithm [25,26].

An exposition of the general mathematical theory
of the control applied to the quantum system may be
found, for example, in Ref [22,23]. Our interest has been
directed to the weak-field approximation, which is not
only much simpler from the mathematical point of view,
but also more physically transparent [27–30]. One of the
problems in this field is that one can obtain a good result
without any idea of the reasons why a given shaped pulse
works.

In order to illustrate how things go, let us consider
what happens when a multilevel system, initially in its
ground state, is perturbed by a weak multicolor Gauss-
ian laser pulse:

E(t) =
∑

j

E0j cos(ωjt +ϕj) exp(−(t − tc)2
/�2

t )

=
∑

j

exp(−(t − tc)2/�2
t ) (zj exp(−iωjt) + c.c.), (8)

where phases and real amplitudes are grouped in the
complex amplitudes zj = Eoj exp(−iφj).

The total Hamiltonian is written as

H = HM + V(t), (9)

where:

HM = Eg |g〉 〈g| +
∑

m

Em |m〉 〈m| and

V(t) = −E(t)
∑

m

(〈g| d |m〉 |g〉 〈m| + h.c.). (10)

(HM is the molecular part, V(t) the field–molecule inter-
action and 〈g| d |m〉 are the dipole matrix elements
between the ground state and the various excited states
(the excited state–excited state dipole elements are sup-
posed to be null here).

The TDSE is solved using the first-order time-depen-
dent perturbation theory. After a few straightforward
passages and using the rotating-wave approximation,
one arrives at the following form of the excited-state
part of the evolving state at time t (after the end of the
pulse), showing explicitly the dependence on phase and
amplitudes (N is a normalization constant):

|ψe(t〉) = N
∑

m

cm exp( − i ∗ Emt) |m〉, (11)

where the vectors of coefficients and complex ampli-
tudes, c and z respectively, are linearly related:

c = A z (12)

and

Amj = √
π�t 〈g| d |m〉 exp( − �mj(�

2
t �mj + 4itp)/4),

�mj = Eg +ωj − Em. (13)

We could be interested in the mean value of the given
observable or in a quantity that depends on the whole
history, as, for example, the total energy absorbed or
emitted coherently by the molecule (this last is due to
the fact that for the whole time interval in which the
system is in a linear combination involving the ground
state and the excited states, the mean value of the dipole
oscillates and thus, according to Maxwell equation, it
radiates). In any case, our task is to find the absolute
maximum (minimum) of a function Fα(E0,ω) of phases
and amplitudes, which are the control parameters (the
carrier frequencies will be held as constant). The total
energy carried by the pulse must be obviously taken
as a constraint to avoid trivial solutions (e.g., we could
increase a given observable concerning excited states by
simply increasing the field strength). The above is not
in general an easy problem, from a numerical point of
view, since the modeling of a realistic system involves
many states and thus the surface Fα(E0,ω) has many
maxima and minima. Specific algorithms, such as the
genetic one [31], have been developed for such a pur-
pose, but their application may be time consuming for
large systems [28].
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Another important point to be considered is the one
concerning the stability of the solution we obtain. In fact,
one should not forget that, since amplitudes and phases
can be experimentally controlled only with a certain
degree of approximation, the final result is physically
significant only if it remains stable while the control
parameters are allowed to vary within the experimen-
tal error. In order to illustrate this point, it is useful to
see what happens if we decide that our goal is to pre-
pare at time t a non-stationary state, whose excited state
component is assigned:
∣∣χe(t)

〉 =
∑

m

vme−iEmt |m〉. (14)

From Eqs. (11), (12) and (14) it is clear that the prob-
lem translates into the linear system:

v = A z, (15)

which is determined after selecting a number of com-
plex amplitudes (i.e of carrier frequencies) equal to the
number of |m〉 states.

Applying Eq. (15) to several model Hamiltonians,
we have verified that very often the matrix A has a
certain number of eigenvalues whose absolute value is
very small. Hence its inversion is a source of instability,
meaning that a small error in the choice of phases and
amplitudes may give rise to a state, which at time t is
very different from the goal, Eq. (14).

In order to overcome this problem, we have devel-
oped and applied a procedure grounded on the linearity
introduced by the weak field assumption. The above
means that to each pulse, like the one in Eq. (8), is asso-
ciated a different prepared state, while a linear combi-
nation of pulses gives rise to the corresponding linear
combination of excited states (only real coefficients are
considered since the electric field is real). Let us first
select a linear space of pulses (whose dimension is Np) in
which to search the optimal one and the corresponding
linear space of prepared states (see below). A generic
pulse can be written as

E(t) = x̃ (Z Ω(t) + c.c). (16)

Here, x and Ω are column vectors whose dimensions are
Np and Nm (the number of |m〉 states) respectively; the
real vector x gives the coefficients of the linear combi-
nation, while Ωj = e−iωkt.

The z vectors specifying the pulses selected as basis
are the columns of the matrix Z. The total energy carried
by the pulse can be compactly written as

EP = x̃ W x, (17)

where, as shown in Ref. [29], W is a matrix that can be
easily built up from the selected pulses.

If |R〉 is the row vector of the states prepared by the
pulses chosen as the basis set, then the state prepared
by the pulse (16) is |u〉 = |R〉 x, while the mean value of
a given observable O is

〈O〉 = x̃ 〈R| O |R〉 x = x̃ O x. (18)

Our variational problem is then:

δ(x̃ O x − λ x̃ W x) = 0, (19)

leading to the following eigenvalue problem for a non-
symmetric matrix:

(W−1 O) x = λ x. (20)

The eigenvector corresponding to the maximum
eigenvalue gives the optimal linear combination of the
selected pulses (the minimum is chosen if one wants to
minimize something). In practice, our method can be
summarized in the following points.

(1) We select a certain number of carrier frequencies
covering the absorption band. These do not vary in
the optimization (i.e. one works only on complex
amplitudes).

(2) We then perform a sequence of steps, generating
a random amplitude and phase for each frequency
component. A check is performed after each step
to verify if the prepared state is linearly indepen-
dent of the previous ones. Only in the positive case,
the generated pulse is accepted and memorized
together with the corresponding state. In practice,
we just look at the smallest eigenvalue of the tenta-
tive new overlap matrix and accept the pulse only
if it is above a given threshold. This ensures a cer-
tain degree of stability to the solution, which can
be further enforced, as discussed in Ref. [27,28].
After a fixed, large number of unfruitful trials to
enlarge the linear space, the procedure is stopped.

(3) The final step is to solve the variational problem in
the selected linear space, building up the matrices
W and O and solving Eq. (20).

It is clear from the previous points that the whole
procedure can be performed also in an eigenstate-free
context. In other words, it does not matter if the
Hamiltonian is written, as usual, in terms of coordinates
and momenta; what is important is our ability to solve
the time-dependent Schroedinger equation for the sys-
tem weakly perturbed by the light pulse.

Various cases have been treated by the method
described above, which shows its ability to achieve some
control of the dynamics of complex systems exhibiting
conical intersections. In Ref. [27], we studied a model
system with two harmonic diabatic surfaces coupled
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to give rise to a conical intersection and showed that
the pulse can be shaped to increase significantly the
population of a given diabatic state at the end of the
pulse. In Ref. [28], we studied the X2A′/A2A′ conical
intersection in the NO2 molecule showing that its time-
dependent fluorescence may be controlled. Different
applications concern the control of the yield of compet-
ing dissociative channels on a model potential energy
surface with two degrees of freedom (not published)
as well the enhancement of the coherent fluorescence
(free-induction decay) from the B850 ring of chromo-
phores present in the light-harvesting 2 (LH2) complex
of the purple bacterium Rhodopseudomonas acidophil-
a [29]. For this case, we also generalized our method to
cases in which a significant dephasing is present, working
in the Liouville space.

Here, a new example is presented illustrating the
possibility of controlling the energy deposition in a lin-
ear aggregate of 10 chromophores, with a nearest-
neighbor exchange interaction, described by the Frenkel
exciton Hamiltonian:

H = Eg |g〉 〈g| +
∑

m

Em |m〉 〈m|

+β
9∑

m=1

( |m〉 〈m + 1| + h.c.). (21)

We have choosen here, Eg − Em = 11,345 cm−1 and
β = 240 cm−1. Figure 1 shows the results obtained in our
attempt to optimize the excitation of terminal chromo-
phores (more exactly, the target function is the fraction
of the excited population in the two terminal chromo-
phores) at a time of 130 fs from the pulse maximum (the
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Fig. 1 The fraction of the excited population staying on the first
chromophore (or on the last, identical in symmetry) as a function
of time. The excitation is produced by a pulse shaped to maximize
such yield at 200 fs

caption contains further details). The comparison with
the result obtained using a monochromatic Gaussian
pulse with the central carrier frequency shows that the
method is quite efficient also working with only five car-
rier frequencies. The interference between the various
components gives to the optimized pulse the character-
istic form shown in Fig. 2, as a function of time. A more
complete analysis can be performed using the Husimi
distribution illustrating simultaneously the behavior in
time and frequency [29]. It is interesting to note from
Fig. 2 that while the optimization is performed at time
t = 200 fs, the fraction of excited population on the ter-
minal chromophore remains higher, on an average, well
after. Figure 3 reports the time-dependent population
of the first (and of the last) chromophore in the linear
chain, for the same calculation of Fig. 2. showing that
despite the weak-field assumption, it is possible to have

0 50 100 150

-0.0004

0.0000

0.0004

dlei
F

cirtcel
E

time (fs)

monochromatic 
pulse

(b)

0 50 100 150

-0.0004

0.0000

0.0004
dlei

F
cirtcel

E

time (fs)

optimal pulse

(a)

Fig. 2 a The optimal pulse designed for the energy deposition
on the terminal chromophores of the 10-unit aggregate described
by the model Hamiltonian (21). The parameters appearing in
the gaussian in Eq. (8) are: tc = 70 fs, �t = 24 fs, while the five
carrier frequencies range uniformly from 10,945 to 11,745 cm−1.
b The monochromatic pulse with a single carrier frequency of
11,345 cm−1. For both (a) and (b), the fields are in atomic units
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Fig. 3 The excitation probability for the first chromophore (i.e.
one half of the total probability of the exciting terminal chromo-
phores) assuming that the transition dipoles are 1 atomic unit,
while the pulse is that in Fig. 2a. Due to the weak fields involved,
the same curve is obtained if the transition dipoles are multiplied
by a given factor while the electric field is divided by the same
factor

simultaneously selectivity (as illustrated in Fig. 2) and
a quite consistent degree of excitation (nearly 1% of
excited aggregates).

3 A biological example: DNA dynamics

In DNA, the bases are involved in two qualitatively
different mutual interaction types, hydrogen bonding
and base stacking, and it is well known that these two
major factors contribute to the stability of the DNA
double helix. The role of hydrogen bonds is well known
for providing structure and directionality in the DNA
base pairs. Base stacking interaction is one of the driv-
ing forces responsible for the stabilization of the three-
dimensional structure of DNA and RNA molecules.
Very few studies are present in literature to directly
connect these two processes [32,33] and only a paper
by one of us [34] has considered the time–dependent
interaction among base pairs in a quantum approach.

In the A–T case, there are two parallel hydrogen
bonds and in the guanine–cytosine system, three. The
most stable structure is named Watson–Crick tautomer
(G–C and A–T, Fig. 1). From this structure, while keep-
ing each monomer in its neutral form, a double hydrogen
atom transfer, as proposed by Löwdin [35,36], gives the
imino-enol tautomer A*–T* and G*–C* and the imino-
enol-imino-enol G# −C#, in adenine–thymine and guan-
ine–cytosine base pairs respectively (Fig. 4).

The idea that imino-enol tautomeric forms of DNA
bases play a role in mutagenesis was formulated a few

year after the Watson–Crick DNA structure [37]. If it
exists an equilibrium in the two tautomeric forms of the
base pair and if the rare tautomer remains stable dur-
ing the time period needed for the replication process,
double hydrogen transfer would play an important role
in the occurrence of spontaneous mutations. Up to now,
the question of whether point mutation could be formed
spontaneously via the tautomerisation process remains
unanswered. We believe that this is a typical problem,
where a theoretical approach supported by reliable cal-
culations can be very useful.

In a hydrogen-bonded system, a quantitative evalua-
tion of the hydrogen transfer probability needs knowl-
edge of the potential energy surface (PES) along the
coordinates involved in this process. As demonstrated
by Florián et al. [38], the use of an adiabatic poten-
tial allowing geometry relaxation during the hydrogen
transfer process is also necessary to estimate both the
amount of the two tautomers and the dynamics of the
process. In our calculations of the electronic structure
of the adenine-thymine and guanine-cytosine base pairs
(performed by DFT-b3lyp with the cc-pVDZ basis set)
[39,40] we have found two static stable structures for
both systems: the A–T and A*–T* tautomers with an
energy difference of 12.9 kcal/mol and the G–C and
G*–C* tautomers with an energy difference of 8.83 Kcal/
mol. Despite the fact that there are not minima corre-
sponding to the zwitterionic structures and to the G#–C#

tautomer, these tautomers play a role in the dynam-
ics. Dynamical calculations on these systems have been
performed propagating an initial state by the Lanczos
scheme (with Householder reorthogonalization)
described in previous papers [9,41]. The basis set has
been formed by tensorial product of the eigenstates of
the three anharmonic oscillators for G–C and two for
A–T base pairs. These eigenstates have been computed
with an accurate numerical procedure based on a lin-
ear variational approach with a Gaussian basis set [42].
The initial state is the tensorial product of the two (or
three) ground states of the monodimensional oscillators.
These initial states have the same hydrogen bond situ-
ation the ground states of the Watson–Crick tautomers
(A–T and G–C).

For discussing a possible mechanism leading from the
Watson–Crick as to the imino-enol tautomers, we note
that not all the hydrogen bonds have the same behav-
ior. In fact in the case of adenine-thymine system, the
PES as a function of the hydrogen position in the N–O
bridge coordinate is steeper than that in the hydrogen
position in the N–N bridge coordinate. We propose to
call N–H–O the hard hydrogen bond, where the posi-
tion of hydrogen is practically frozen, and N–H–H the
soft hydrogen bond, where the position of hydrogen can
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Fig. 4 The main tautomers of the guanine–cytosine and adenite–thymine base pairs

change more easily. The same different behavior in the
hydrogen bridges can be found in the guanine–cytosine
system: the N–H–N and the O–H–N bonds are soft and
the N–H–O bond is hard (Fig. 5). This difference in
the behavior of the hydrogen bridges is not due to the
intrinsic characteristic of these bonds, since it disappears
when the other coordinates not directly involved in the
hydrogen bridges are frozen.

We have found that the suitable mechanism for the
conversion of A–T to A*–T* cannot be a concerted dou-
ble hydrogen transfer. Only a two-step mechanism is
possible, since the movement of hydrogen in the N–O
bridge is frozen, when the hydrogen in the other hydro-
gen bridge is around the equilibrium position of the A–T
structure. Instead, the change of energy due to the move-
ment of hydrogen in the N–N bridge is softer. The two-
step mechanism of A*–T* formation is not efficient and
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only a small amount of this tautomer can be found at
any time; nevertheless, it generates several hundreds of
mutation points in a DNA with a million A–T (or T–A)
bases (Fig. 6). Apart from these two tautomers, and in
larger amount than the A*–T* structure, the dynamical
Aδ+ − Tδ− tautomer results from the transfer of hydro-
gen atom in the N–N bridge from thymine to adenine
[39]. Instead, the suitable mechanism for the conversion
of G–C to G*–C* can be both the concerted double
hydrogen transfer and the two-step process, since these
two hydrogen bonds are soft according to our nomen-
clature. On the contrary, the G–C to G#–C# conversion
is mainly a two-step process, since one bridge is hard
and the other is soft. The amount of these tautomers is
in any case sufficient to generate several thousands of
mutation points in the G*–C* structure and hundreds in
the G#–C# structure in DNA with one million of G–C
(or C–G) bases (Fig. 7). Beyond these three tautom-
ers, there are the dynamical Gδ+–Cδ− and Gδ−–Cδ+
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Fig. 6 Time-dependent probability of the A*–T* tautomer
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Fig. 7 Time-dependent probability of the G–C tautomer

tautomers (not reported here) [40], related to the trans-
fer of hydrogen atom in the N—O, N—N and O—N
bridges, i.e. from guanine to cytosine and vice versa. It is
noteworthy that the probabilities of the imino-enol tau-
tomers of both adenine–thymine and guanine–cytosine
presented here have been computed from the TDSE,
while in the literature static thermal populations are
usually found.

The consequence of the significant amount of the
so-called rare tautomer populations and of their time
evolution on biological properties can be summarized as
follows. First of all, there is a large difference between
these quantum probabilities and the frequency of spon-
taneous mutations since the value [43] of this frequency
in DNA is from 10−8 to 10−10. Of course, we must
also remember that the rate of spontaneous mutation
is related to the biological condition: for example, the
occurrence of mutations in the non-replicated genome
is significantly slower than the one taking place during
DNA replication [44]. In any case, we believe that this
large difference can be an indication of a minor role of
the base pair tautomerisation in the mutation process.
Second, the difference in stability between A–T and G–
C has been related [45] to the deficiency of the G–C
content of the DNA in higher organisms [46], which is
generally as low as 0.5 times (0.4 in humans) the A–T
content. We believe that also this consideration is not
reasonable, since our calculation supports the same sta-
bility for the A–T and G–C systems. Finally, it is worth-
while to recall that our studies show, for the first time,
a periodic behavior of the imino-enol structures to be
compared with the non-periodic behavior of the imino-
enol-imino-enol G#–C# tautomer (also exhibiting large
variations in the amount of these structures). It is inter-
esting to mention that the simultaneous occurrence of
opposite behaviors in the same system is one of the most
intriguing results in the area of Complexity Science.

Looking at the atomic charge variation during these
processes of hydrogen transfer, one may notice that this
is not a simple proton transfer. The hydrogen atomic
charge changes through the transfer from the donor to
the acceptor, but one cannot say that the bare proton
moves while the electron remains in the original frag-
ment. The process of hydrogen transfer in the base pairs
systems must instead be regarded as a proton-coupled
electron transfer [47,48]. Moreover, in both cases, the
heavy atoms supporting the bridge have complemen-
tary charge variations with the acceptor becoming less
negative and the donor more negative.

In [34] we have studied the relation between the
hydrogen atoms transfer and the base stacking interac-
tion. Two phenomena are present in the polynucleotide
system: the stacking coupling among a base pair and its



Theor Chem Acc (2007) 117:755–764 763

neighbors and the dynamical process of hydrogen atoms’
transfer in the base pair. These two, phenomena inter-
act since the base–base stacking coupling is modified by
the hydrogen atoms passage from the complementary
bases in a pair. Of course, this modification is maxi-
mum for the nearer bases and decrease in farther bases.
Hence we assume that only the nearer bases are coupled
to a specific base in the chain. These modifications are
time dependent since the process of hydrogen transfer
is time-dependent and a simple sinusoidal behaviour is
assumed.

The base stacking energy consists of two parts. The
van der Waal’s component of stacking is overlap-depen-
dent and includes the dominating dispersion attraction
as well as steric effects. The electrostatic component
of stacking reflects the mutual interaction of molecular
electrostatic potentials of bases. In contrast to the vari-
able electrostatic stacking terms, the van der Waal’s con-
tributions are essentially independent of the sequence.
Their total values are highly conserved, ranging from
−16.6 to −16.9 kcal/mol [49]. There are moderate vari-
ations in the Pyr-Pyr and Pur-Pyr(3′) terms, correlated
with the presence or absence of the N2-amino group.
In addition to the base–base interactions, it would be
possible to analyze other contributions to the potential
energy as well, e.g., sugar–base interactions. However,
the interbase interactions most probably contain the
majority of stacking coupling effects.

The main result of this study [34] can be considered
to be the evidence of a longtime coherent process of
complete transfer of hydrogen atoms in a base pair in
the condition of consecutive identical base pairs. In this
case, the amount of the so-called “rare tautomers,” the
imino-enol tautomeric forms of DNA base pairs, can
become much larger, until the complete passage, in the
oligomer systems.

4 Conclusions

The examples discussed in the previous two sections well
illustrate the usefulness of a time-dependent approach
in quite different research areas. Among the many other
problems that have been studied with the help of a
numerical propagation of wave-packets, we mentioned
many examples in the field of theoretical photochemis-
try. These concern the systematic study of the dynamics
around a conical intersection [20,41,50–52] and a recent
contribution, in collaboration with the Olivucci group,
focused on a new explanation for the observed multi-
exponential decay of the retinal chromophore [53]. As a
final remark, we want to mention that our future activity
will be mainly focused on the development of methods

for including more degrees of freedom in the calcula-
tions and for taking into account the role of the solvent
in the dynamics of excited states.
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